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J.  Phys. A: Math. Gen. 20 (1987) 995-1010. Printed in the U K  

Finite-size scaling and universality in the spectrum of the 
quantum Ising chain: I. Periodic and antiperiodic boundary 
conditions 

Malte Henkel 
Physikalisches Institut, Universitat Bonn, Nussallee 12, D-5300 Bonn 1, West Germany 

Received 9 June 1986 

Abstract. The spectrum of the quantum king chain is studied in the finite-size scaling limit 
for periodic and antiperiodic boundary conditions. The finite-size corrections are computed 
for all energy gaps. The results of our model are used to test the Privman-Fisher universality 
hypothesis and conformal theory. 

At the critical point, it is shown how to build the spectrum from the irreducible 
representations of the Virasoro algebra. In addition, we find evidence for an unsuspected 
symmetry for systems both non-critical and of finite size. 

1. Introduction 

In Hamiltonian field theory, finite-size scaling (for a review see Barber (1983)) has 
been used to extract critical points and critical exponents from the two lowest eigen- 
values of the Hamiltonian. 

It is the object of this paper to study, in the finite-size scaling limit, the whole 
spectrum. This will be done for an exactly soluble model (Katsura 1962), defined on 
a chain with N sites: 

where ax, ay, a' are the Pauli matrices. We do  not include terms of the form b Xn ax(  n), 
which give rise to a longitudinal magnetic field. The normalisation of H, which in 
principle is arbitrary, is fixed by the requirements of conformal theory (von Gehlen 
et al 1986). We shall first complete the definition of the problem and shall then explain 
what we want to do. 

The phase diagram is well known (Barouch and McCoy 1971). For all y (O< y s l ) ,  
there is a critical point at h,  = 1, which falls into the 2~ Ising universality class. 

We specify the boundary conditions taking in (1.1): 

a ( N  + 1) = ( -  l ) % ( l )  (1.2) 

where a stands for ax or ay and get the Hamiltonians H"). Free boundary conditions 
will be studied in a separate paper. H commutes with the operator: 

N 

(1.3) 

0305-4470/87/040995 + 16$02.50 @ 1987 IOP Publishing Ltd 995 



996 M Hen kel 

which has eigenvalues 0 and 1. The corresponding eigenspaces of Q are called sectors 
0 and 1. We are thus left with the blocks HbQ’, where Q labels the sectors 0 and 1. 
We can further prediagonalise HLQ’ by using translational invariance, where the 
momentum P will be used to label the resulting submatrices. 

The scaling variable z is defined as 

z = N ( h  - 1) (1.4) 

and we are interested in the finite-size scaling limit N + a, h -+ 1 and z fixed. 
Since our Hamiltonian (1.1) is exactly soluble (Katsura 1962), it provides a fine 

laboratory for testing general ideas. In this work, we focus on the question of 
universality with respect to y. We now state what we want to compute. 

( i )  Consider the case z = 0. Our first aim is to obtain the finite-size corrections to 
the ground-state energy Eo: 

E,/ N = E ~ +  E > /  NI+ 4 N 4 + 0 (  N - 6 ) .  (1.5) 

We find that only c2 is a universal number. This confirms a result from conformal 
theory for periodic boundary conditions (Blote et a1 1986, Affleck 1986): 

€ 2  = -&rC (1.6) 

where c is the central charge of the Virasoro algebra ( c  = f for the Ising model (Belavin 
et a1 1984)) 

[L , ,  L , , l = ( n - m ) ~ . , , + , ~ c ( n ~ - n ) 6 , , + , , , , .  (1.7) 

Next, we turn to the scaled energy gaps F, = ( N / 2 7 7 ) (  E, - E,) of a level E, of H 

(1.8) 

where i is a label of the excited levels. The numbers A, are universal and are given 
by the irreducible representations of a pair of Virasoro algebras with the same central 
charge c (Belavin et a1 1984, Cardy 1986a, von Gehlen and Rittenberg 1986). We shall 
identify the irreducible representations which build the spectrum of the HhQ’ at the 
critical point. The B , ( y )  and the C , ( y )  show a unique y dependence for all levels. 

The spectra of our HdQ’ are in a one-to-one correspondence with the spectrum of 
the continuum field theoretic Majorana Hamiltonian (see, e.g., Bander and Itzkyson 
1977) with prescribed boundary conditions. This connection will be shown in full detail. 

( i i )  We now take z f 0. For the energy gap, we obtain 

~,(z) = A , ( ~ / Y ) + O ( N - ’ )  (1.9) 

and we shall compute the universal functions A, exactly, for all energy levels. Our 
results include, as special cases, previous studies on the lowest excitations (Hamer 
and Barber (1981) and Burkhardt and Guim (1985) at y = 1 and von Gehlen et a1 
(1984) for y arbitrary and z = 0). 

Our result confirms, to leading order in 1/ N, the Privman-Fisher (1984) universality 
hypothesis, which states that the inverse correlation length 6;’ should be 

(1.10) 

where D is a non-universal system-dependent constant and Y, is a universal function. 
We stress that, besides D, there is no further non-universal constant involved. To our 
knowledge, this is the first time that (1.10) is checked for the whole spectrum. 

with the ground state E,, (see 5 2 for a precise definition): 

F, = A, + B,( y )  N - ? +  C, (  y )  N-‘+ O( N-‘) 

6;’ = N-’ Y,(  Dz)  
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At this point, a few remarks are in order. The Hamiltonian H can be written as 
the sum of the critical point Hamiltonian H ,  and a perturbation 

(1.11) 

where the 0, are scaling fields from the irreducible representations of the Virasoro 
algebra and the a,(y) are y-dependent non-universal constants. As will be shown in 
detail by Reinicke (1986), the corrections to the critical point Hamiltonian in both z 
and 1/ N can be obtained in terms of perturbation theory from (1.11) using the n-point 
correlation functions at the critical point. 

For our  model, (1.9) tells us that the gaps depend on the unique variable z/y.  This 
means that there is a single scaling field @ which describes, to leading order in 1 /N ,  
the z dependence of the scaling function. The observed y dependence of the argument 
of the scaling function comes from the amplitude a(  y )  of the scaling field 0. 

Next, we look at the corrections in 1 /N  to (1.9). We have 

F , ( z ) = A , ( z / y ) + N - ' B , ( z ,  y ) + .  . . . . (1.12) 

The leading corrections, given by the functions B, ( z ,  y) ,  are not in agreement with the 
Privmann-Fisher hypothesis. This is probably not too surprising if more than one 
scaling field contributes. In this case, we have more than one a , ( y )  (see (1.11)) and  
consequently a more complicated y dependence. 

( i i i )  Finally, we return to the spectra of the HL". At z = 0, the levels are highly 
degenerate. Most of these degeneracies are broken if one moves away from z = 0, but 
we also find a pattern of states which remain degenerate for arbitrary values of both 
z as well as 1/ N. This is an  indication for the existence of a new, unexpected, symmetry 
in our model. 

The paper is organised as follows. In § 2, we briefly review the diagonalisation of 
H and establish our notation. In § 3, we give the irreducible representations of the 
Virasoro algebra which build the spectrum. In  addition, we give the explicit relation 
of the spectra of the continuum Majorana Hamiltonian with the HLQ'. In 9 4, we study 
the finite-size behaviour for z = 0. 

The scaling functions are computed in § 5, where we shall also confirm the Privman- 
Fisher hypothesis. A list of the gaps of the lowest excitations corresponding to the 
primary fields of conformal theory is given in 9 6. In  9 7, we examine the spectrum 
away from the critical point. A summary of our results is presented in 9 8. 

In the appendix, we analyse the sums encountered in the finite-size scaling study. 

2. Statement of the problem 

In this section we outline the calculation of the spectrum of H.  It is mainly intended 
to establish our notation. 

We diagonalise the Hamiltonian of (1.1) by a Jordan-Wigner transformation 
followed by a canonical transformation (for details see Katsura 1962) and obtain 

H = -E A ( 9  ( m  ) ) ( - T + ,  v m  + i) 
m 

where v;, v m  are fermionic creation and annihilation operators and 
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The function cp(m) depends on the boundary conditions (Lieb er a1 1961, see also 
Burkhardt and Guim 1985). We distinguish two cases (Hamiltonians H‘*’, H‘B’) 

2 m + l  
N d m )  =- 7r m = 0,. . . , (2.3) 

(2.4) 
2m 
N cp(m)=--.rr m = O , .  . . , 

and [XI is the largest integer less or equal to x. Case A corresponds to antiperiodic 
boundary conditions and case B corresponds to periodic boundary conditions in the 
fermions. The identification of the Hamiltonians H(A’, H‘B’ with the Hamiltonians 
H&P is as follows. 

The sector 0 in the space with an even number of fermionic excitations and the 
sector 1 is the space with an odd number of excitations. We can identify 

(B)  

For z = 0, we have in addition Hv) = H‘O’ I ‘  

of H&O’ with an eigenstate of momentum P. We are interested in the gaps 
Let EAo’ be the energy of the lowest state of H f ’  and let E&O’(P, r )  be an eigenvalue 

N 
27r 

F$’( P, r )  = - ( EdG’( P, r )  - Eho’) 

where r = 0 denotes the lowest gap, r = 1 the second gap (for a fixed momentum P )  
and so on. For two states, which use the same function cp( m ) ,  the F are directly given 
by the A(m). If two states use different functions cp(m), the F will receive, besides 
the contribution of the A ( m ) ,  an additional cpntribution from the difference of the 
ground-state energies of the Hamiltonians H&” used. 

In the following, the F will be computed as a function of the scaling variable 

Z =  N ( h  - 1) (2.7) 
in the limit N + 00, h -* 1 and z fixed. 

3. Spectrum and Virasoro algebra 

In this section we present, in the limit N + cx), the spectra of the H$’ and give the 
representations of the Virasoro algebra which build the spectrum. In the next subsec- 
tion, we briefly review (see Friedan er a1 1984) the facts about the Virasoro algebra 
that we need for our purposes. In the following subsection, the representations building 
the spectra for the H&? are given. In 0 3.3, we give the relation to the continuum 
Majorana Hamiltonian. 

For this whole section, we take z = 0. 

3.1. The Virasoro algebra 

The irreducible representations of the Virasoro algebra (1.7) can be characterised by 
their highest weight states [A) ,  which are defined by 

Lo1 A) = A b )  
L, I A) = o if n > 0. 
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These are just the primary fields known from conformal theory. They give the lowest 
lying states of our spectra. Excited states are, in principle, generated from the primary 
fields by 

(3 .2 )  

and r = r ,  +.  . . + rk but not all of the states are independent. Let d ( A ,  r )  denote the 
degeneracy of the level ( A +  r ) .  

For the king model, the central charge (see (1.7)) is f and A can only take the 
values 0, k and f (Friedan et a1 1984). Using the character formula of Rocha-Caridi 
(1984), Altschiiler and Lacki (1985) have computed the values of d ( A ,  r )  which are 
listed in table 1.  The d ( A ,  r )  are the numbers which will be compared with our spectra 
in the next section. 

I A + r )  = Lr1 . . . L-  r l  I A )  ri > 0 

Table 1. The function d(A, r )  representing the degeneracies of the level ( A + r )  of the 
irreducible representation with the lowest weight A.  

A 0 1 2 3 4 5 6 7 8 9  10 

0 1 0 1 1 2 2 3 3 5 5  7 
2 4 5 6  8 

10 - ,k 1 1 1 2 2 3 4 5  

1 1 1 1 1 2 2 3  
6 8  

3.2. Identification of the irreducible representations 

Recall that the spectra are given by two commuting Virasoro algebras with the same 
central charge. The spectra are thus given by pairs of irreducible representations. The 
primary fields are characterised by two numbers A and 5, where x = A+ 5 is the scaling 
dimension and s = A - A is the spin of the primary field ( A ,  A). In the spectrum built 
from this field one gets the levels 

F(P)=(A+r)+(&+P)  

P = ( A +  r )  - (A+ ?)+id (3.3)  

( r ,  P = O ,  1 ,2 , .  . .) with degeneracy d ( A ,  r )  d ( & ,  ?).- 

operator is 
Returning to our model ( l . l ) ,  we take the F&”(P) from (2.6). The momentum 

where 

m ++ case A, equation (2.3) 
case B, equation (2.4). (3.5) 

The spectra are shown, for z = 0, in figures 1-3. From (3.3) and table 1 we see that 
the spectrum of Hio’ is generated from (0,O) and (5, f), H‘,” is generated from (i, 0) 
and (0,;) and H Y ’  and Hio’, which have the same spectrum, are generated from (k, k). 

After we had finished this calculation, we received a paper by Cardy (1986b), where 
the same identification of the primary fields with the spectra was obtained. 
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Figure 1.  Spectrum of Hb” at z = 0 and N + r. The symbol G denotes a twofold degenerate 
state. 
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Figure 2. Spectrum of H:”’ and HA’’ at z = 0 and N + CC. The zero of energy is chosen to 
be the ground state of HLO’. 
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Figure 3. Spectrum of H\” at z = 0 and N + m. The zero of energy is the ground state of 
H p .  
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3.3. Relation to the Majorana Hamiltonian 

We now give the relation between the Hamiltonians U&‘) and the continuum Majorana 
(e.g. Bander and Itzkyson 1977, see also von Gehlen er a1 1986) Hamiltonian with 
definite boundary conditions. 

Begin with case A (equation (2.3)). This corresponds to antiperiodic boundary 
conditions for the Majorana spinor. The sector 0 is given by U:’ and sector 1 by HI’) .  
Case B (equation (2.4)) corresponds to periodic boundary conditions for the Majorana 
spinors. The spectrum is given by U t ’  and HIo’. 

4. Finite-size corrections at z = O  

In  this section, we study the finite-size corrections to the ground-state energy and to 
the energy gaps at z = 0. 

4.1.  Ground-state energy 

The lowest lying level of the H&” is the E r ’  defined in § 2. From equations (2.1)-(2.3) 
we have 

This sum is analysed in the appendix, with the result (equation (A13)): 

where T , ( y )  is defined in equation (A12). 
We can now compare our results with conformal theory. The leading correction 

in 1 / N  to the ground-state energy per spin, which is of the order of I / N 2 ,  is seen 
from (4.2) to be a universal number. This is in agreement with a formula by Blote et 
a1 (1986) and Affleck (1986) already mentioned in the introduction (equation (1.6)) 
which provides a relation with the central charge c. For the numerical value of c we 
find c = i, in agreement with the result of Belavin et a1 (1984). 

4.2. Energy gaps 

Before we give the general result, we look at an example. Consider Fio’(O, 0) which 
receives contributions from the ground-state energies of both H r i  and H‘,’’, since the 
first state is in sector 1. The gap is thus given by the difference of the zero-point 
energies of Hbo’ and U‘,”’, which use different froms of q ( m )  (see equations (2.3) and 
(2.4)): 

N 
4~ m 

FIO’(O,O) =-I [ N % ( m ) ) - N P A ( m ) ) l  (4.3) 

N 
277 

=- ( S 2 N  -2SN)  (4.4) 

N - ’ + o ( N - ~ )  
1 T 2 1 4  
8 128 ( y 2  3) 

- (4.5) 
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where S N  is taken from the appendix (A17). Other gaps are obtained along the lines 
given in § 2. 

If both states use the same function q ( m ) ,  the gaps are given by A ( m ) ,  which we 
write down here for case A: 

To obtain case B, replace m +I 2 b Y m. 
If different functions rp( m )  are used by both states, then in addition to the contribu- 

tion of the A(m),  the gap gets a contribution as the one in (4.5). 
To summarise: the next-to-leading term, which is of the order of 1/ N2, shows the 

same y dependence for all gaps. For the next-to-leading correction, of order l / N 4 ,  
we first observe from (4.6) that again all gaps show the same y dependence. Its y 
dependent factor contains two terms. The first one can be thought of as a second-order 
effect from the leading correction, while the second term introduces a new contribution. 

In terms of scaling fields (see ( 1 . 1 1 ) )  this means that the leading correction, of 
order I/N2, is generated from a single scaling field Ql, while the next-to-leading 
correction, of order l / N 4 ,  has contributions from Q1 and at least one more field Q2.  

5. Finite-size scaling functions 

In this section, we obtain the exact scaling functions for the whole energy spectrum. 
In addition, we study corrections to scaling. 

A major topic of this section is to find out to what extent the Privman-Fisher (1984) 
universality hypothesis is valid. We expect for our normalised gaps Fi( z )  

E ; ( z )  = Y; (Dz)  (5 .1)  
where i labels the specific gap, D is a model-dependent non-universal constant and 
yi is a universal function. Besides 0, there is no further non-universal constant 
involved. 

We now present the scaling functions. As in § 4.2, we begin with the gap F\”(O, 0), 
which is given by 

N z l  
2 l i ( N y  2 

F‘,O’(O, 0) = - -+- S2, (2z) - S,( z) (5.2) 

where S,(z) is analysed in the appendix (A28). We have 

where 

(5.4) 

is a remnant function (Fisher and Barber 1972), of which we need the property 

R,t,o(x) = 0 ( x 2 )  if x + 0. (5.5) 
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Equation (5.3) gives, to leading order in 1/ N, the exact scaling function. For y = 1, 
this result was already obtained by Hamer and Barber (1981)’f. 

To obtain the other gaps, we have to compute the A ( m ) .  We find, after a tedious 
calculation 

where (for case A) 

1 6 7 2  1 4 
6 Y  

A2 = ( m  + 5) - (7 - J) - ( m + ‘) 2 6 Y  < 
2 56 z’ ($ - y~ + --) 7 A4 = - ( m + !-) $ (1 - E) + ( m + i) l o  

(5.7) 

(5.9) 

(5.10) 

(5.11) 

Case B is obtained by replacing m +’ 2 b Y m. 
To leading order in 1/ N, the scaling functions of any desired gap can be obtained 

by combining (5.3), (5.6) and (5.7). 
We point out that, to the order in 1 / N  specified, these equations give the exact 

scaling functions. 
We now look at the leading terms in 1/N. From (5.3), (5.6) and (5.7) we see that 

the scaling function of an arbitrary gap depends only on the variable z /y ,  but not on 
z or y alone. This is just what is stated by (5.1). To leading order in 1 /N ,  we have 
thus verified for all gaps the Privman-Fisher universality hypothesis. 

Next, we consider corrections to scaling. I t  is sufficient to consider only gaps of 
states which belong to Hb”, so that we only have to deal with A ( m )  from (5.6)-(5.11). 
Consider the leading correction, which is of order 1/N. From (5.8), we see that A,  
contains, besides the factor z /  y, an additional factor of 1/ y, which is not accommodated 
by (5.1). The second correction, of order 1/N2, shows an entirely different y depen- 
dence. We also note that the y-dependence of the leading correction is different from 
the one found for z = 0. We conclude that, for z # 0, already the leading corrections 
to scaling do not satisfy the Privman-Fisher hypothesis. This argment can be extended 
to the other H&”. As already mentioned in the introduction, the confirmation of the 
Privman-Fisher hypothesis means that the corrections in z are generated by a single 
scaling field. The correction in 1/ N contain contributions from more than one field. 
In (5.8)-(5.11) we note the appearance of new fields with increasing order of 1/N. In 
principle, one can obtain from these expressions the a,(y) for the scaling fields (Dl of 
(1.1 1). 

+ The formula of Hamer and Barber (1981, equation (4.8)) contains two minor errors. 
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We conclude with a remark on the leading contribution. Consider (5.7). The 
amplitude gives the gaps for the HIP’, whose states are generated by pairs of fermionic 
excitations. From (3.4) and (3.5) we recall that the m +; is a momentum eigenvalue. 
Consequently, the leading term gives an  energy-momentum relation F = ( p 2 + p i ) 1 ’ 2  
which is the same as for a bosonic particle with mass pe = ( 1 / 4 ~ ) z /  y. 

On the other hand, for the HI0’, whose states are generated by an odd number of 
fermionic excitations, we have a linear energy-momentum relation as shown in figure 
5. The lowest gap in this sector is F = ( 1 / 4 r ) z /  y + O ( z 2 ) .  This characterises a Dirac 
particle with mass p F = ( 1 / 4 r ) z / y .  Since we have from (5.3) that p u < 2 p F ,  the 
Hamiltonian H (1.1) has a bosonic bound state. 

6. Gaps of the primary fields 

In this section, we collect the inverse spin-spin and energy-energy correlation lengths, 
which are just the gaps of the primary fields mentioned in 9 3 for the purpose of easy 
reference (see Reinicke 1986). 

Begin with z = 0. The gaps of the primary fields are given by F&”( P, 0) (see § 2 )  
where the momentum Pis P = 0 for H r ’ ,  P = *l for HY’  and P = *$for H:”. Introduce 
the parametrisation 

The numbers F‘” and F‘2’ are given in table 2. Note that for 0 = 1, there are two 
states which give the same gap (see § 3). For comparison, we also give in table 2 the 
scaling dimensions A and 5. 

Now, let z be arbitrary. We take the parameterisation 

The numbers F“’, F“’ and F‘” are given in table 3. 

given by the perturbations of the energy operator 
We now give a qualitative description. In the limit N + OC, the corrections in z are 

N 1 
& = - ( h - l )  2 cT‘(n).  (6.3) 

2Y n = 1  

From table 3, we immediately see that the one-fermion gap Fp’ gets a first-order 
correction whereas the leading correction for the bosonic gap F P )  is a second-order 
contribution of the same term. 

Table 2. Numerical value for the inverse spin-spin and energy-energy correlation lengths 
at z = 0. 

d Q 0 F‘O’ p i  A 

I I I 

I I I I 
0 0 1 8 I I 

- 
I6 

- 
16 

- 1 1 I6 
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Table 3. Numerical values for the inverse spin-spin and  energy-energy correlation lengths 
to leading order  in l /  N. The scaling dimensions h and  are the same as  in table 2 .  

0 0 1 0 8 
1 1 0 4 

1 0 s 1 41112 

I 

I 

The numbers given in tables 2 and 3 and the role of the energy operator are 
reproduced by the perturbation method of Reinicke (1986). 

7. Degeneracies in the spectrum for z f O  

Having computed the scaling functipns in the limit N + ~3 and their leading corrections, 
we return to the spectra of the HhQ’. At z = 0, as we saw in § 3, the levels are highly 
degenerate. Most of the states, which were degenerate at z = 0, are non-degenerate 
for z # 0. However, there are groups of states which remain degenerate, even if z # 0 
and on finite chains. This is much more profound than the trivial degeneracy of states 
with opposite momenta P and - P. 

In order to illustrate what can happen, we compute the spectra of the H&O’ for 
N = 100 and z = 4. In figure 4, we show the spectrum of HAo’. We observe, for example, 
a group of four states with F = 2.5 (they have F = 2 at z = 0) which remain degenerate. 
Further sets of four degenerate states each can be found at F=3.5, 4.3, 4.4, 5.3, 5.4 
and 5.9. Up  to F = 6, we have thus seen seven sets of degenerate levels. 

Since the exact gaps are obtained by combining (2.2) and (2.3), it is easy to see 
that this degeneracy holds true for all z and for all values of N (provided the chain 
is long enough to guarantee the existence of the higher levels). 

We also note that states which have the same F and P at z = 0 always split for z # 0. 
The same phenomenon is observed for the spectrum of HI0’, where we find two 

sets of four states at F = 4 and 5 (see figure 5 ) .  The spectrum of HA’’ is related to the 

I 

6 .  

L 

7 

3 

7 

5 

I 

6. 

o J  , 
- 4  - 2  0 2 4 

P 

Figure 4. Spectrum of HA’’ at  z = 4 a n d  N = 100. The numbers label the sets of degenerate 
states. 
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O J  , 
-4  - 2  0 2 4 

P 

Figure 5. Spectrum of H‘,’’ at z = 4 and N = 100. The zero of energy is the ground state 
of Hk”. The numbers label the sets of degenerate states. 

spectrum of H‘,’’ via 

Fd“( z )  = FYI( z )  + z/27ry (7 .1)  

and does not contain independent information. 
Finally, we have the same effect for Hi’’ (figure 6), where at F15.1 we have a set 

of eight degenerate states. 
To conclude, we have seen a regular pattern of degenerate states with remains 

degenerate if either z # 0 or  N finite. This means that there exists an  unsuspected 
symmetry in the model which becomes apparent if either 

( i )  the thermodynamic limit is approached via a sequence of non-critical ( z  # 0) 
models, or 

(ii) the system is kept at finite size. 
At the time of writing, the nature of this additional symmetry remains unknown. This 
is an open problem under investigation. 

Finally, we mention that a similar effect has shown up  for the Z, quantum chain 
(von Gehlen and Rittenberg 1986). 

1 

-L - 2  0 2 4 
P 

Figure 6. Spectrum of H‘,” at z = 4 and N = 100. The zero of energy is the ground state 
of HA’). The numbers label the sets of degenerate states. 
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8. Summary 

We now collect our results. 
We have studied, in the finite-size scaling limit, the spectrum of the Hamiltonian 

(1.1) for periodic and antiperiodic boundary conditions. By the introduction of a 
parameter y we could study different models in the same universality class. We 
computed the scaling functions of all gaps and examined corrections to scaling. 

We obtained the following results. 
(1) At the critical point, the spectrum of the Hamiltonian is given by the irreducible 

representation of a pair of commuting Virasoro algebras with the same central charge. 
(2) The spectrum of the continuum Majorana Hamiltonian with periodic and 

antiperiodic boundary conditions is given by the spectra of the H$’. 
(3) At the critical point, the leading correction in 1/N to the ground-state energy 

per spin, which is of order 1 / N 2 ,  is universal. Its numerical value is in agreement 
with a result from conformal theory which gives a relation to the central charge c. 

(4) To leading order in 1/ N, the exactly known scaling functions for all gaps and 
periodic and antiperiodic boundary conditions were found to be universal functions 
of the variable z / y .  We have thus verified for our model that the Privman-Fisher 
(1984) hypothesis is valid for the whole spectrum. 

( 5 )  Corrections to scaling are in general non-universal. This was seen for z # 0, 
where already the leading correction was non-universal in the Privman-Fisher sense. 
For z = 0, however, we found that each order is 1/ N shows the same y dependence 
for all gaps. 

( 6 )  For z f 0, we observed in the spectra of the H&“ groups of states which remain 
degenerate for all z and for all values of 1/N. This indicates the existence of an 
unsuspected symmetry. 

In a subsequent paper, we shall study this model for free boundary conditions. 
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Appendix 

We analyse the sums arising in the finite-size scaling analysis of 00 4 and 5 .  
We begin with 

+ sin(-)[ .rr(k+f) 
k = l  

= G 1 + G 2 .  
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For G1, we have immediately 

G, is expanded by the binomial theorem: 

G2 = ( - 1 ) ( )) ( 1 - $) 5 ( sin 7 
/ = 0  k = l  

From Hansen (1975), equation (15.1.1) we have 

21+1 

To obtain an expansion in 1 /N,  we can expand the trigonometric functions of the 
right-hand side of (A6). In the following, we shall use three other identities: 

/ 21+1 1 
21+1-2k (21+ l ) !  k 2 = O  ( - ' I k (  k ) 

(Hansen (1975), equation (6.6.32)) 

Equations (A5) and (A6) follow directly from Hansen's (1975) equation (6.7.2). 
Returning to (A6), the leading term, which is of order N, is obtained by using (A7): 

For the contributions of order 1 /N ,  we see from (A8) that we only have to take 
into account the term with 1 = 0. Similarly, for the contributions of order l /  N3, the _ .  
only non-vanishing terms are those with I = 0, 1. Finally, collecting terms, we have 

( A l l )  

where 

)* (A121 T l ( Y ) =  I = O  1 (,I/(+) I (21+1)!7r (l-;)I=;(l+ y (  1 - y*)"* 
22'+2( 1 !)2 cos-' y X 

So we obtain 

N 5T 772 1 4 
Phi =z T,(y)+--- --- + o ( N - ~ ) .  121%' 9 6 0 N 3 ( y 2  3) 
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Next, we study 

From Hansen (1975), equation (15.1.1), we have 

Now, the analysis is parallel to the one of G2 (A5). Expanding the cotangent and 
collecting terms we obtain 

N 77 7r3 1 4 s - - T ~ ( ? ) - - + ~  i-- + o ( N - ~ ) .  
, - 2  6 N  120N ( y  3) 

Finally, we study 

Z 2  .rrk ' I 2  
S,w ( z )  = - 1 [ -+ 4y' sin2( $) - 4( y2 - 1) sin4( x)] . 1 N - I  

y A = O  N2 
(A181 

We follow the same route as Hamer and Barber (1981). We separate off the term with 
k = 0 and use the decomposition 

1 / 2  U? 
( U + U Z )  = U [ ( 1 + -J - 1 - $1 + + - 2v 

where 

Thus 

S N  ( z )  = z /  NY + g1 + g2 + g3 
where g, is given (A14), up  to a constant factor, and for g, we have 

and this can be analysed as above. 
For 1 =0,  we have from Hamer and Barber (1981): 

where CE = 0.577. . . is Euler's constant. The case 1 = 1 corresponds to 1 = 0 in (A5) 
and we have 
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where 
p3 ,( ;i) 2 * ' - ' [ ( I -  1) !I' ( ; )' 2 

1 - 7  =--1n y .  (A25) 
(21-  1)  !7r 7T 

T , ( y ) = - C  ( -1 )  
I = 1  

Finally, we look at g,: 

Following Hamer and Barber (1981), in this sum we can ignore everything but the 
lowest order in k and extend the sum to infinity. This introduces an  error of the size 
O ( z Z / N 2 ) .  Consequently, with (5 .4) ,  we can write g, as a remnant function: 

Collecting everything, we have 
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